首页|基于SCG-BP神经网络的车牌字符识别

基于SCG-BP神经网络的车牌字符识别

扫码查看
针对传统BP网络算法存在车牌字符识别速度慢和准确率低的问题,提出了一种SCG优化的BP神经网络车牌字符识别的算法.通过对BP神经网络的输入和算法进行改进实现提高神经网络对字符的识别效率.对输入的优化是使用主成分分析法进行车牌字符特征提取,将提取的特征作为BP神经网络的输入.对算法的优化是使用成比例共轭梯度下降法寻找网络最优连接权重.仿真实验表明,SCG-BP神经网络大幅度缩短识别时间并且提高了准确率,确定隐含层神经元个数为110.该算法对车牌字符的识别率可以达到95%以上,取得结果达到预期,改进的算法有一定的实践可行性.
License Plate Character Recognition Based on SCG-BP Neural Network

李非

展开 >

东北石油大学电子科学学院 大庆 163000

车牌字符识别 主成分分析法 SCG BP神经网络

2021

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2021.49(6)
  • 3
  • 20