首页|基于NAR神经网络的船舶运动姿态短期预测

基于NAR神经网络的船舶运动姿态短期预测

扫码查看
船舶在海上作业的过程中,不可避免地会受到风浪的扰动影响,风浪扰动可以分解到船舶运动的六个自由度上,而船舶的六自由度运动是一个复杂的非线性过程.借助预测算法可以对船舶短时间后的运动状态进行预测,从而更好辅助在船舶上的工作活动.为了提升船舶运动姿态的预测精度,建立了非线性自回归(NAR)神经网络模型,并利用NAR模型对船舶运动姿态进行预测仿真,将仿真结果与AR预测法的结果进行对比.仿真结果分析表明,基于NAR神经网络模型的预测算法与传统的基于AR模型的预测算法相比,精度更高,更具有实用价值.
Short-term Prediction of Ship Motion Attitude Based on NAR Neural Network

余缜、李军

展开 >

南京理工大学自动化学院 南京 210094

船舶运动预测 时间序列 自回归模型 神经网络

2021

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2021.49(7)
  • 2
  • 3