首页|基于NLA-EAST的自然场景文本检测方法

基于NLA-EAST的自然场景文本检测方法

扫码查看
近年来,基于深度学习的场景文本检测算法层出不穷,对于EAST在自然场景中对长文本和较大文本检测不准确,存在容易出现误检漏检的问题.论文提出一种基于NLA-EAST网络(Non-Local Attention-An Efficient and Accurate Scene Text Detector)上的新颖的文本检测算法,通过ASPP空洞卷积来扩大感受野,来获得更大感受野的上下文信息.并且通过结合EAST和非局部注意力机制来精确定位文本边界,准确检测自然场景下的文本位置,克服了EAST对于较大文本和长文本的漏检和误检.对提出的方法进行了数据集测试,在文本定位精度方面由于竞争方法,在ICDAR 2015数据集中,F值达到了84.5%,在天池数据集上,F值达到了84.82%.
Natural Scene Text Detection Based on NLA-EAST

姚焙继、朱玉全、岑燕妮

展开 >

江苏大学计算机科学与通信工程学院 镇江 212013

场景文本检测 长文本 较大文本 NLA-EAST 非局部注意力

2021

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2021.49(7)
  • 2