首页|基于SR-VGG19的人脸表情识别算法研究

基于SR-VGG19的人脸表情识别算法研究

扫码查看
针对人脸表情识别率低、泛化能力弱的问题,提出一种基于改进卷积神经网络的表情识别算法.对VGG19网络模型进行优化,采用改进的区域候选网络(Improved Regional Proposal Network,IRPN)代替滑动窗口以避免图像特征的重复提取;在输出层之前使用空间金字塔池化(Spatial Pyramid Pooling,SPP)来提高图像特征的表达能力.通过应用Dropout和批归一化(Batch Normalization,BN)策略来解决过拟合问题,并提高网络模型的泛化能力.采用经典的FER2013和CK+人脸表情数据库对该算法与2013年Kaggle比赛前十名的算法和最近几年提出的人脸表情识别算法分别进行对比实验.结果表明,论文提出的算法人脸表情识别率优于上述算法,分别为73.1%(FER2013)和98.99%(CK+),可实现较好的人脸表情识别效果.
Research on Facial Expression Recognition Based on SR-VGG19

张业、杨词慧、张杰妹、蒋沅

展开 >

南昌航空大学信息工程学院 南昌 330063

卷积神经网络 空间金字塔池化 深度学习 区域候选网络

6140221861601216GJJ180516

2021

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2021.49(9)
  • 5
  • 3