首页|SVR算法的生物混液左旋多巴含量紫外光谱建模

SVR算法的生物混液左旋多巴含量紫外光谱建模

扫码查看
以酪氨酸和左旋多巴混合溶液中左旋多巴的紫外光谱数据为研究对象,首先用Kennard-Stone算法对样品集进行分割;然后使用ν-SVR和ε-SVR算法对核进行建模,以建立不同的核.紫外光谱定量分析模型中左旋多巴含量的功能;最后,采用粒子群算法对参数进行了优化,并与传统的PLS算法进行了比较.实验结果表明,由ν-SVR,ε-SVR和PLS建立的左旋多巴含量校正模型具有较高的准确性,预测性能略有不同.在预测集实验中,PLS,ν-SVR(RBF)和ε-SVR(RBF)算法的预测均方根误差分别为1.755、0.826和0.68.实验已经证明了使用紫外光谱法快速测定左旋多巴含量的有效性以及基于径向基函数的ε-SVR的建模优势.
UV Modeling of Levodopa Concentration Based on SVR Algorithm

王文哲

展开 >

江南大学物联网工程学院 无锡 214000

左旋多巴 紫外光谱分析 SVR算法 粒子群算法 偏最小二乘法

2022

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2022.50(2)
  • 2