首页|基于多分支卷积的单目深度估计方法研究

基于多分支卷积的单目深度估计方法研究

扫码查看
单目深度估计目前存在精度欠佳和物体边界深度预测模糊等挑战,针对上述问题,论文提出了一种基于多分支卷积的单目深度估计算法,利用复杂的卷积结构提取场景中更丰富的语义信息。模型在训练阶段使用四分支卷积替代原有单分支卷积,测试部署时可将多支路卷积的权重参数移植到原单支路网络上,从而网络模型在测试及使用阶段不会增加额外的推理时间。在公开数据集的测试对比中,论文提出的方法预测的深度图结果更加清晰,能有效地应对图片中物体边界等区域,实验结论证明论文提出的方法具备一定的有效性。
Research on Monocular Depth Estimation Based on Diverse Branch Block
Monocular depth estimation currently has challenges such as poor accuracy and blurred object boundary depth pre-diction.In response to the above problems,this paper proposes a monocular depth estimation algorithm based on diverse-branch convolution,which uses complex convolution structure to extract richer scenes in the scene semantic information.The model uses four-branch convolution to replace the original single-branch convolution in the training phase,and the weight parameters of the di-verse-branch convolution can be transplanted to the original single-branch network during test deployment,so that no additional in-ference time is added to the network model during the testing and use phases.In the test comparison of public datasets,the depth map results predicted by the method proposed in this paper are clearer,and can effectively deal with areas such as object boundar-ies in the picture.The experimental results show that the method proposed in this paper has certain effectiveness.

convolutional neural networkself-supervised learningmonocular depth estimationdiverse-branch convolu-tion

印雅萌、周嘉麒、王指辉

展开 >

南京航空航天大学 南京 210016

卷积神经网络 自监督学习 单目深度估计 多分支卷积

2023

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2023.51(12)
  • 21