首页|基于Yolov3的人脸检测算法研究

基于Yolov3的人脸检测算法研究

扫码查看
针对现实复杂场景中人脸检测存在精度低、召回率小和速度慢的问题,提出一种改进Yolov3的人脸检测算法GL-Yolov3。采用深度可分离卷积和标准卷积构建特征提取网络(Darknet-MI),利用GIoU边框回归损失设计算法的损失函数,同时使用K-means++聚类算法分析设置先验框的尺寸,以更好地适应各种人脸检测场景。此外,提出基于高效通道注意力机制的特征融合算法,通过对特征图不同通道进行重标定,获取更加有用的特征信息。所提算法在Wider Face数据集上平均精度为91。7%,且平均检测时间只需24。3ms,实验证明,改进的Yolov3算法在保证高准确率的前提下,有效地实现了实时人脸检测。
Research on Face Detection Algorithm Based on Yolov3
Aiming at the problems of low precision,low recall and slow speed on face detection in the complex real scenes,this paper proposes a face detection algorithm GL-Yolov3 based on improved Yolov3.The algorithm adopts the depthwise separable convolutions and the standard convolutions construct the feature extraction network(Darknet-MI),the GIoU as loss for bounding box regression is utilized to design the loss function of the algorithm.At the same time,the K-means++ clustering algorithm is used to analyze and set the size of the anchor box to better adapt various face detection scenarios.In addition,the feature fusion algorithm based on efficient channel attention mechanism is proposed,which can obtain more useful feature information by recalibrating the different channels of feature map.The average precision of the proposed algorithm on the Wider Face dataset is 91.7%,and the aver-age detection time is only 24.3ms.It has been proved by experiments that the improved Yolov3 algorithm effectively realizes re-al-time face detection under the premise of ensuring high accuracy.

face detectionK-means++depthwise separable convolutionsGIoUECA-Net

许霞、吴陈、杨英豪

展开 >

江苏科技大学计算机学院 镇江 212100

东南大学计算机科学与工程学院 南京 211189

人脸检测 K-means++ 深度可分离卷积 GIoU ECA-Net

国家自然科学基金项目国家自然科学基金项目

6177224461906078

2023

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2023.51(12)
  • 23