首页|基于时空信息分段融合模型的术中低血压预测

基于时空信息分段融合模型的术中低血压预测

扫码查看
准确提前预测术中低血压的发生对术中选择紧急方案以及降低患者术后的不良风险和死亡率具有积极作用。术中低血压预测目前主要基于术中患者的各项生理指标数据,但现有方法未能充分考虑多指标间的时间信息和空间信息。针对以上问题,提出基于时空信息分段融合模型的术中低血压预测,先使用全卷积网络或残差网络提取局部空间信息,再使用门控循环单元提取时间信息并进行预测。通过对比术中低血压预测常用的深度神经网络模型,在原始和填补的临床数据的术中低血压预测中,不仅提高了低血压事件的预测准确性,还在面对数据填补时表现出一定的容忍度,能够应对噪声和不确定性的影响。
Two-Stage Spatio-Temporal Information Fusion Model for Intraoperative Hypotension Prediction
Accurately predicting intraoperative hypotension in advance has a positive impact on the selection of emergency in-terventions during surgery and the reduction of adverse risks and mortality rates in postoperative patients.Currently,the prediction of intraoperative hypotension is mainly based on various physiological indicators of patients during surgery,and existing methods fail to adequately consider the temporal and spatial information among multiple indicators.To address these issues,a two-stage spa-tio-temporal information fusion model for intraoperative hypotension prediction is proposed.It first utilizes either a fully convolution-al network or a residual network to extract local spatial information,and then employs gated recurrent units to capture temporal infor-mation for prediction.By comparing with commonly used deep neural network models for intraoperative hypotension prediction,the proposed model not only improves the prediction accuracy of hypotensive events in both original and imputed clinical data but also exhibits a certain tolerance when dealing with data imputation,thus effectively addressing the impact of noise and uncertainty.

intraoperative hypotensionspatial-temporal informationinformation fusion

吴少峰、周瑞豪、郝学超、张伟义、舒红平、王亚强、朱涛

展开 >

成都信息工程大学软件工程学院 成都 610225

成都信息工程大学数据科学与工程研究所 成都 610225

成都信息工程大学软件自动生成与智能服务四川省重点实验室 成都 610225

四川大学华西医院麻醉手术中心 成都 610044

展开 >

术中低血压 时空信息 信息融合

四川大学华西医院"学科卓越发展1·3·5工程"交叉学科创新项目四川大学华西医院1·3·5项目国家重点研发计划

2023H022ZYJC210082018YFC2001800

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(1)
  • 15