首页|多要素多目标武器装备协同规划系统

多要素多目标武器装备协同规划系统

扫码查看
未来战争形态将因信息化技术的迅猛发展而面临巨大变革,联合作战将成为主要形式。联合作战中武器装备协同规划需要根据战场态势实时协同规划以达成最优或次最优的武器装备调度方案与路径规划方案。然而传统算法存在计算资源消耗大、实现全局最优解难、无法适应动态环境等缺点。针对上述问题,提出了基于SAC的武器装备调度算法和基于注意力机制的全局路径规划算法,利用注意力机制的特征拟合能力、神经网络端到端输出能力和强化学习对环境的适应能力,解决了传统算法规划效率低、局部最优陷阱和适应性差的缺点,形成了一整套武器装备协同规划决策系统。最终实验结果表明,该武器装备协同算法在规划效果和规划效率方面都优于传统算法,具有实际应用价值。
A Collaborative Planning System for Multi Element and Multi Objective Weapon Equipment
With the rapid development of information technology,the form of war in the future will face great changes and joint operations will become the main form.Collaborative planning of weapons and equipment in joint operations requires real-time collaborative planning according to battlefield situation to achieve the optimal or suboptimal weapons and equipment scheduling scheme and path planning scheme.However,the traditional algorithm has some disadvantages,such as large consumption of com-puting resources,difficulty in achieving global optimal solution,and inability to adapt to dynamic environment.In order to solve the above problems,a weapon scheduling algorithm based on SAC and a global path planning algorithm based on attention mechanism are proposed.By utilizing the feature fitting ability of attention mechanism,the end-to-end output ability of neural network and the adaptability of reinforcement learning to the environment,the shortcomings of traditional algorithms such as low planning efficien-cy,local optimal trap and poor adaptability are solved.A complete set of collaborative planning and decision-making systems for weapons and equipment has been formed.The final experimental results show that the weapon and equipment collaboration algo-rithm is superior to the traditional algorithm in terms of planning effect and efficiency,and has practical application value.

collaborative planningresource schedulingpath planning

史继筠、张驰、连贺扬、陈杰浩、张美慧

展开 >

北京理工大学计算机学院 北京 100081

中国工业互联网研究院 北京 100016

协同规划 资源调度 路径规划

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(1)
  • 10