首页|基于卷积长短时记忆网络的国际平整度指标预测

基于卷积长短时记忆网络的国际平整度指标预测

扫码查看
公路的快速发展带来了对路面各项指标快速检测和分析的需求,针对路面国际平整度指标的特点,提出使用卷积神经网络与长短期记忆神经网络的结合(CNN-LSTM)对国际平整度指标进行预测,卷积神经网络和长短期记忆神经网络分别学习激光雷达距离数据的空间维度特征和时间维度特征,完成对平整度指标的预测.实验结果表明,相比较与LSTM网络,CNN-LSTM模型的MAPE值仅有2.3488,准确度和召回率分别达到90.61%和87.89%.通过真实值和预测值的对比可以发现CNN-LSTM更加适用于国际平整度指标的预测.
Prediction of International Roughness Index Based on Convolution Long Short Time Memory Network
The rapid development of highway brings the demand for rapid detection and analysis of various pavement indexes.According to the characteristics of international pavement roughness indexes,the combination of convolution neural network and long-term and short-term memory neural network(CNN-LSTM)is proposed to predict the international pavement roughness index-es.Convolution neural network and long-term and short-term memory neural network learn the spatial dimension of lidar range data respectively according to the characteristics of roughness and time dimension,the prediction of flatness index is completed.The ex-perimental results show that,compared with LSTM network,the MAPE value of CNN-LSTM model is only 2.3488,and the accura-cy and recall rate are 90.61%and 87.89%respectively.By comparing the real value with the predicted value,it can be found that CNN-LSTM is more suitable for the prediction of international roughness index.

long short memory neural networkinternational roughness predictionconvolutional neural networkpavement roughness

黄凯枫、刘庆华

展开 >

江苏科技大学电子信息学院 镇江 212100

长短时记忆神经网络 国际平整度预测 卷积神经网络 路面平整度

国家自然科学基金江苏省"六大人才高峰"高层次人才项目

51008143XYDXX-117

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(1)
  • 15