首页|大规模知识图谱数据的分布式存储与检索系统

大规模知识图谱数据的分布式存储与检索系统

扫码查看
知识图谱已经广泛应用于各个领域。针对传统集中式查询的效率低和硬件压力大等问题,对大规模知识图谱的分布式检索与查询进行了研究。采用基于查询负载优化的轻量级重划分算法,通过设置不同权重实现了服务器间的查询负载均衡,从而在查询速度和系统性能上都有了显著的提高。同时,设计了基于查询代价的子图分解查询算法,以查询图的结构信息为基础,加快了系统的查询速度。在分布式微服务管理系统中,采用Spring Cloud的分布式微服务架构和Nginx的负载均衡技术,保证了系统在高并发情况下的可靠性和高可用性。实验结果表明,这些算法在查询效率和系统性能方面都优于传统算法,具有实际应用价值。
Distributed Storage and Retrieval System for Large-scale Knowledge Graph Data
Knowledge graphs have been widely used in various fields.In order to solve the problems of low efficiency and high hardware pressure of traditional centralized query,the distributed retrieval and query of large-scale knowledge graph is studied.The lightweight repartitioning algorithm based on query load optimization is used to achieve query load balancing between servers by set-ting different weights,which significantly improves the query speed and system performance.At the same time,this paper designs a subgraph decomposition query algorithm based on query cost,which is based on the structural information of the query graph,so as to accelerate the query speed of the system.In the distributed microservice management system,Spring Cloud's distributed microser-vice architecture and Nginx's load balancing technology are used to ensure the reliability and high availability of the system in the case of high concurrency.Experimental results show that these algorithms are better than traditional algorithms in terms of query effi-ciency and system performance,and have practical application value.

knowledge graphgraph partitioningsubgraph retrievaldistributed

史继筠、张驰、李传赫、张美慧

展开 >

北京理工大学计算机学院 北京 100081

中国科学院声学研究所海洋声学技术实验室 北京 100190

知识图谱 图划分 子图检索 分布式

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(2)
  • 20