首页|基于改进YOLOv4算法的遥感图像飞机目标检测

基于改进YOLOv4算法的遥感图像飞机目标检测

扫码查看
针对在遥感图像上对飞机目标检测的精度低问题,论文通过对PANet特征融合网络结构的加深使得YOLOv4算法对小目标的检测更加敏感,进而提高算法的平均检测精度;另外,利用K-means++算法产生了能够自适应与数据集的检测先验框以减少YOLOv4检测算法对边界框回归损失计算过程中的冗余。在RSOD(Remote Sensing Object Detection)数据集上的对比实验表明,综合改进后的YOLOv4算法AP值达到了80。25%。特别地,改进后的YOLOv4算法对小目标检测的置信度得分较高。
Aircraft Object Detection Based on Improved YOLOv4 Algorithm for Remote Sensing Images
Aiming at the problem of low accuracy of aircraft target detection on remote sensing images,this paper deepens the PANet feature fusion network structure to make the YOLOv4 algorithm more sensitive to the detection of small objects,thereby im-proving the average detection precision of the algorithm.In addition,the K-means++ algorithm is used to generate adaptive data sets.In order to reduce the redundancy of the YOLOv4 detection algorithm in the calculation of the bounding box regression loss.Comparative experiments on the RSOD data set show that the AP value of the improved algorithm reaches 80.25%.In particular,the improved YOLOv4 algorithm has a higher confidence score for small object detection respectively.

remote sensing imagesobject detectionYOLOv4feature fusion

王惠中、文学

展开 >

兰州理工大学电气工程与信息工程学院 兰州 730050

兰州理工大学甘肃省工业过程先进控制重点实验室 兰州 730050

遥感图像 目标检测 YOLOv4 特征融合

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(2)
  • 15