首页|基于生成对抗网络和对比学习的联邦学习方法

基于生成对抗网络和对比学习的联邦学习方法

扫码查看
联邦学习作为一种分布式的学习机制,主要用于保护用户数据隐私安全和解决数据孤岛的难题。现有的研究存在边缘节点数据规模较小以及数据的非独立同分布所导致的模型精度较低等问题。使用对比学习的方法可以在联邦学习的参数聚合更新过程中进行本地模型更新模型梯度参数的时候能取得最接近全局模型的表现,解决了数据的非独立同分布所导致边缘模型的精度较低等问题,提高了边缘模型的表现。仿真实验结果表明,当对比损失权重为1时,模型的精度平均提高1。05%,当对比损失权重为10时,模型的精度平均提高2。14%。利用生成对抗网络的方法扩充边缘节点的数据量,解决了边缘节点数据量较少导致模型精度较低等问题。仿真实验结果表明,使用基于生成对抗网络的方法进行数据扩充,分别扩充100%和200%后,模型的精度平均提高了0。76%和1。12%。
Federated Learning Method Based on Generative Adversarial Networks and Contrastive Learning
As a distributed learning mechanism,federated learning is mainly used to protect user data privacy and solve the problem of data islands.Existing research has problems such as the small scale of edge node data and the low accuracy of the model caused by the non-independent and identical distribution of data.Using the method of comparative learning can achieve the perfor-mance closest to the global model when the local model updates the model gradient parameters during the parameter aggregation up-date process of federated learning,which solves the problem of low accuracy of the edge model caused by the non-independent and identical distribution of data.The performance of marginal models is improved.Simulation results show that when the weight of the contrastive loss is 1,the accuracy of the model is increased by 1.05%on average,and when the weight of the contrastive loss is 10,the accuracy of the model is increased by 2.14%on average.Using the method of generative confrontation network to expand the data volume of edge nodes solves the problem of low model accuracy caused by the small amount of data of edge nodes.The simulation ex-periment results show that the accuracy of the model is increased by 0.76%and 1.12%on average after data expansion using the method based on the generative confrontation network.

federated learningcontrastive learninggenerative adversarial networks

田耕

展开 >

零八一电子集团有限公司 成都 611700

联邦学习 对比学习 生成对抗网络

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(2)
  • 15