首页|基于Fisher鉴别分析和集成学习的烟叶分级方法

基于Fisher鉴别分析和集成学习的烟叶分级方法

扫码查看
智能烟叶分级能有效提升成品烟质量。为了进一步提升烟叶分级正确率,提出了联合利用烟叶正面、背面、透视三视图的烟叶分级方法。对于每个视图,提取其纹理、颜色、形状特征作为模型的输入,通过线性判别分析降低特征维度,以支持向量机(Support Vector Machine,SVM)作为基分类器,利用袋装法做集成,得到一种集成学习的烟叶分级模型。通过整合烟叶正面、背面、透视三视图共同提取到特征,带入上述分级模型,进一步提升了分级准确率。实验结果表明,仅对正面视图,提出的集成学习分级模型在五个真实烟叶数据集上的平均准确率为71。93%,优于现有方法。使用三视图分级后,平均准确率提高到了74。8%。
Tobacco-leaf Ranking Method Based on Fisher Discriminant Analysis and Ensemble Learning
Intelligent tobacco-leaf ranking is crucial for the quality of cigarette production.To further improve the accuracy of tobacco-leaf ranking,a method of jointly utilizing three leaf views of front,back and perspective is proposed.For each of the three views,texture,color and shape features of tobacco leaves are extracted as the input of the model,and then the feature dimensionali-ty is reduced by linear discriminant analysis.SVM is used as the base classifier,and multiple SVMs are integrated using bagging method to form a ensemble learning based tobacco ranking model.To integrate the features from the three views,the ensemble mod-el is further improved in ranking accuracy.The experimental results show that for only the front view the average accuracy of the pro-posed method achieves 71.39%on the five real tobacco-leaf datasets,which outperforms several existing methods.After fusing joint features of the three views,the accuracy is up amount to 74.8%.

tobacco gradingSVMlinear discriminant analysisensemble learningbagging method

顾晓东、陈龙、王艺斌、魏新亮、符再德、邓斌、周文辉、黄振军、袁志明、李和平、刘金云

展开 >

南京理工大学计算机科学与工程学院 南京 210094

湖南中烟工业有限责任公司 长沙 430100

南京焦耳科技有限责任公司 南京 210032

湘西鹤盛原烟发展有限责任公司 吉首 416000

展开 >

烟叶分级 SVM 线性判别分析 集成学习 袋装法

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(2)
  • 29