首页|基于Serverless架构的人工智能实验平台的设计与实现

基于Serverless架构的人工智能实验平台的设计与实现

扫码查看
针对实验环境搭建复杂、实验数据量大以及算法实现难度高等人工智能实验教学中的现实问题,设计并实现了基于Serverless架构的人工智能实验平台。通过整合容器构建、工作负载管理以及事件触发这三者来完成Serverless架构的设计与搭建;平台使用Docker image作为实验容器镜像,镜像中集成scikit-learn算法库与大量公用数据集完成海量人工智能基础算法的迁移;实验教学管理员以提交实验代码包的形式新增实验,学生可以使用实验容器中大量公用算法完成实验,提高了平台的可扩展性和易用性;同时,平台基于Serverless架构实现实验容器的动态扩缩容,增加了平台的多用户并发能力。
Design and Implementation of Artificial Intelligence Experimental Platform Based on Serverless Architecture
Aiming at the practical problems of artificial intelligence experimental teaching in complex experimental environ-ment,large amount of experimental data and high difficulty of algorithm implementation,an artificial intelligence experimental plat-form based on Serverless architecture is designed and implemented.Serverless architecture is designed and built by integrating con-tainer construction,workload management and event triggering.The platform uses Docker image as the image of the experimental container,in which the scikit-learn algorithm library and a large number of public data sets are integrated to complete the migration of massive artificial intelligence basic algorithms.The experimental teaching administrators add new experiments in the form of sub-mitting experimental code packages.Students can use a large number of common algorithms in the experimental container to com-plete experiments,which improves the extensibility and usability of the platform.At the same time,the platform based on Serverless architecture to achieve the experimental container dynamic expansion capacity,increase the platform's multi-user concurrency abili-ty.

artificial intelligenceServerlessDockerKubernetesscikit-learn

李泽慧、张新有

展开 >

西南交通大学计算机与人工智能学院 成都 611756

人工智能 Serverless Docker Kubernetes scikit-learn

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(2)
  • 15