首页|改进粒子群算法在光储系统MPPT中的应用

改进粒子群算法在光储系统MPPT中的应用

扫码查看
光伏系统中的MPPT的控制策略的好坏是影响光储系统母线侧电压波动的一个主要因素。传统MPPT控制策略在外部环境变化下会出现控制精度不高和追踪速度慢等问题,基于人工智能算法的MPPT又存在着控制过程复杂,陷入局部最优解等问题。对于此,提出一种改进型粒子群MPPT控制算法,在该算法中使用莱维飞行改进粒子运动方式,扩大粒子的搜索范围和灵敏度。该改进算法能有效提高传统算法的准确性和速度,在追踪光伏侧最大功率的同时能有效维持直流母线电压稳定。在Matlab/Simulink软件上进行电路的搭建和算法的优化,经实验证明改进型算法相比于传统算法能够较快地追踪到最大功率点的同时保障输出功率稳定,具有较好的实用性。
Application of Improved Particle Swarm Optimization Algorithm in Optical Storage System MPPT
The control strategy of MPPT in photovoltaic system is one of the main factors affecting the voltage fluctuation of bus side of optical storage system.The traditional MPPT control strategy will have some problems such as low control accuracy and slow tracking speed under the change of external environment,while the MPPT based on artificial intelligence algorithm has some problems such as complex control process and falling into local optimal solution.In this paper,an improved particle swarm optimiza-tion(MPPT)control algorithm is proposed.In this algorithm,Levy flight is used to improve the particle motion mode and expand the particle search range and sensitivity.The improved algorithm can effectively improve the accuracy and speed of the traditional al-gorithm,and maintain the voltage stability of the DC bus effectively while tracking the maximum power of the PV side.The circuit construction and algorithm optimization are carried out on Matlab/Simulink software.The experimental results show that the im-proved algorithm can track the maximum power point faster than the traditional algorithm and ensure the stability of the output pow-er,which has good practicability.

optical storage systemDC bus voltageMPPTPSOLevy flight

徐子健、张兰红、杨亚

展开 >

盐城工学院电气工程学院 盐城 224051

光储系统 直流母线电压 MPPT 粒子群算法 莱维飞行

盐城工学院研究生科研与实践创新计划

SJCX22_XZ012

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(3)
  • 16