首页|机器学习在肺癌诊断中的研究和应用

机器学习在肺癌诊断中的研究和应用

扫码查看
肺癌是一种严重危害人类健康的恶行肿瘤,以其高发病率和高死亡率闻名[1]。如何快速准确地诊断肺癌是肺癌预防和治疗的一大挑战,对人类的生命健康具有重要意义。论文将机器学习方法中的支持向量机(SVM)、随机森林(RF)与XGBoost模型进行比较分析。通过模型评估指标中的准确率、召回率、f1值、精确度和ROC曲线对比分析,证明了支持向量机在线性核函数下能较好地预测肺癌,准确率可以达到95。18%。同时发现随机森林与XGBoost模型的各项性能评估指标在SMOTE算法均衡化后的数据集上均有较高的提升,其准确率可以达到89。16%和90。36%。在保证准确率的前提下,随机森林和XGBoost较之支持向量机可以更快地得到预测结果,在辅助诊断肺癌中也是很好的模型选择。
Research and Application of Lung Cancer Diagnosis on Machine Learning Algorithm
Lung cancer is evil tumor which seriously harms human health and is famous for its high morbidity and mortality.Rapid and accurate diagnosis of lung cancer is a major challenge in the prevention and treatment of lung cancer,which is signifi-cance to human life and health.Support vector machine(SVM),random forest(RF)and XGBoost model are compared and analyzed.The accuracy,recall,f1 score,precision and ROC curve of the model are anlayzed,it is proved that the linear support vector ma-chine can better predict lung cancer,and the accuracy rate can reach 95.18%.The performance evaluation indexes of random forest and XGBoost model are highly improved on the data set balanced by SMOTE algorithm,and its accuracy can reach 89.16%and 90.36%.Random forest and XGBoost can get the prediction results faster than support vector machine,and they are also good model choices in the auxiliary diagnosis of lung cancer.

lung cancersupport vector machinerandom forestXGBoost algorithmSMOTE algorithm

朱勇、晏峻峰

展开 >

湖南中医药大学 长沙 410208

肺癌 支持向量机 随机森林 XGBoost算法 SMOTE算法

湖南省教育厅重点项目湖南中医药大学中医学一流学科开放基金

21A02502022ZYX08

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(3)
  • 16