首页|基于深度学习和集成学习的点云目标识别方法研究

基于深度学习和集成学习的点云目标识别方法研究

扫码查看
针对深度学习在当前点云目标识别任务中性能较好但提升缓慢,以及单网络模型提取特征不充分导致信息隐性丢失的问题,研究提出了一种基于深度学习和集成学习的点云目标识别新方法。该方法基于Stacking集成算法,利用Lo-gistic回归对基于邻域特征学习的PointNet、基于图卷积的RGCNN和基于优化卷积的PointCNN三类典型的点云目标识别深度神经网络进行了集成。实验结果表明:集成模型在ModelNet40数据集上的分类精度达到93。7%,在ShapeNet Part数据集上的语义分割mIoU达到87。6%,优于现有大多数深度学习方法。
Research on Point Clouds Target Recognition Method Based on Deep Learning and Ensemble Learning
In view of the problem that the performance of the current point cloud target recognition task is good while the im-provement is slow,and the single network model is not sufficient to extract features resulting in hidden loss of information,the re-search proposes a new point cloud target recognition method based on deep learning and ensemble learning.Based on the Stacking algorithm,the method uses Logistic regression to ensemble three types of typical point cloud target recognition deep neural net-works,which are PointNet based on neighborhood feature learning,RGCNN based on graph convolution,and PointCNN based on optimized χ-convolution.The experimental results show that the classification accuracy of the ensemble model on ModelNet40 datas-et reaches 93.7%,and the semantic segmentation mIoU on ShapeNet Part dataset reaches 87.6%,which is better than most existing deep learning methods.

deep learning3D point cloudstarget recognitionensemble learningStacking algorithm

张冬冬、郭杰、陈阳

展开 >

解放军陆军工程大学 南京 210007

深度学习 三维点云 目标识别 集成学习 Stacking算法

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(3)
  • 29