首页|基于记忆模拟退火算法的扫地机器人遍历路径规划

基于记忆模拟退火算法的扫地机器人遍历路径规划

扫码查看
论文聚焦于解决扫地机器人在执行作业时的路径规划问题,采用了一种新的遍历算法,将改进的模拟退火算法和蚁群算法结合。通过采用记忆模拟退火算法,确定了遍历分区的最佳顺序,并进一步利用蚁群算法将这些分区有效地连接在一起。研究结果表明,经过改进的算法在规划遍历子区域中心基点的路径时表现出显著的优越性,其路径长度相较于传统模拟退火算法减少了8。87%;扫地机器人对路径遍历的覆盖率能达到 100%,并将路径遍历的重复率降低至 8%左右。和传统模拟退火算法相比,改进模拟退火算法新增了记忆器,使其更容易跳出局部最优,改善了解的质量,大大提升了扫地机器人的作业效率。
Traversal Path Planning of Sweeping Robot Based on Memory Simulated Annealing Algorithm
In order to solve the path planning problem of sweeping robot,a traversal algorithm based on improved simulated annealing algorithm and ant colony algorithm is proposed.The memory simulated annealing algorithm is used to solve the optimal or-der of traversing the partition,and the ant colony algorithm is used to connect.The simulation results show that the path length of the central point of the sub-region planned by the improved algorithm is 8.87%shorter than that of the traditional simulated anneal-ing algorithm.The path traversal coverage of the cleaning robot can reach 100%,and the path traversal repetition rate can be re-duced to about 8%.Compared with the traditional simulated annealing algorithm,the improved simulated annealing algorithm adds new memory,makes it easier to jump out of the local optimum,improves the quality of understanding,and greatly improves the effi-ciency of the scanning robot.

sweeping robotmemory simulated annealing algorithmant colony algorithmpath planning

孟浩德、吴征天、吴闻笛、施坤

展开 >

苏州科技大学电子信息与工程学院 苏州 215000

扫地机器人 记忆模拟退火算法 蚁群算法 路径规划

国家自然科学基金国家自然科学基金江苏省高等学校"青蓝工程"项目国家高技术研究发展计划(863计划)

61803279616723712014AA110501

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(3)
  • 16