首页|基于高光谱技术的鲜烟叶叶绿素含量模型估算研究

基于高光谱技术的鲜烟叶叶绿素含量模型估算研究

扫码查看
运用高光谱成像仪采集自然光条件下的鲜烟叶高光谱图像,经过多元散射校正、归一化、SG卷积平滑法等六种预处理方法对光谱原始数据进行预处理后,再利用连续投影法(SPA)提取特征敏感波长,以选取的敏感波长对应的光谱反射率作为输入变量,利用BP神经网络算法对鲜烟叶叶绿素a、叶绿素b含量进行预测建模。结果表明:叶绿素a含量预测模型(SNV-SPA-BP)、叶绿素b含量预测模型(SG2-SPA-BP)效果最好,预测集的相关系数分别为0。897、0。936,可以结合高光谱成像技术对户外鲜烟叶叶绿素含量进行快速无损的预测。
Research on Model Estimation of Chlorophyll Content in Fresh Tobacco Leaves Based on Hyperspectral Technology
A hyperspectral imager is used to collect hyperspectral images of fresh tobacco leaves under natural light condi-tions.After six preprocessing methods such as multiple scattering correction,normalization,and SG convolution smoothing,the original spectral data are preprocessed,and then the continuous projection method(SPA)is used to extract characteristic sensitive wavelengths,it takes the spectral reflectance corresponding to the selected sensitive wavelengths as input variables,and uses the BP neural network algorithm to predict and model the content of chlorophyll a and chlorophyll b in fresh tobacco leaves.The results show that the chlorophyll a content prediction model(SNV-SPA-BP)and the chlorophyll b content prediction model(SG2-SPA-BP)have the best results,and the correlation coefficients of the prediction sets are 0.897 and 0.936,respectively,which can be combined with hyperspectral imaging technology.The chlorophyll content of outdoor fresh tobacco leaves is quickly and non-destructively predicted.

fresh tobaccohyperspectralchlorophyllSPABP

张珍、吴雪梅、刘红芸、张富贵、喻丽华

展开 >

贵州大学机械工程学院 贵阳 550025

鲜烟叶 高光谱 叶绿素 SPA BP

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(3)
  • 16