首页|基于生成对抗网络的医学图像扩充算法

基于生成对抗网络的医学图像扩充算法

扫码查看
生成对抗网络凭借其强大的拟合能力,已经在许多领域展露峥嵘。论文提出了一种基于生成对抗网络的针对肺部CT图像的图像生成方法,该方法融合了自注意力机制的特征提取能力和生成对抗网络对数据分布的拟合能力,同时针对输入向量进行特异性处理,实验结果表明,论文方法生成图像具有较高的质量以及可用性。
Medical Image Expansion Algorithm Based on Generative Adversarial Networks
Generative adversarial networks have achieved significant results in many fields by virtue of their powerful fitting ability.The paper proposes a generative adversarial network-based image generation method for lung CT images,which combines the feature extraction ability of the self-attentive mechanism and the fitting ability of the generative adversarial network to the data distribution,as well as the specificity processing for the input vector,and the experimental results show that the paper method gen-erates images with high quality as well as usability.

generative adversarial networksCT imagesself-codingdataset expansion

于志勇

展开 >

中国石油大学(华东)计算机科学与技术学院 青岛 266580

生成对抗网络 CT图像 自编码 数据集扩充

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(3)
  • 16