首页|基于机器视觉和改进支持向量机的苹果外观分级检测

基于机器视觉和改进支持向量机的苹果外观分级检测

扫码查看
针对传统苹果外观品质分级存在的低效率、低精度等问题,提出了基于机器视觉和改进支持向量机的苹果外观分级方法。通过视频图像方法建立苹果色泽分级图像数据库,采用数学形态学方法把苹果从背景中分离出来,提取苹果的色泽、大小、缺陷、纹理等外观特征向量作为支持向量机(SVM)的输入特征向量;针对噪声影响较大、数据不平衡等问题,采用改进的自适应惩罚支持向量机分类器(DCSVM)进行苹果外观品质分级检测。结果表明:该分类器具有良好的分级效果(分级准确率为93。56%),优于传统的支持向量机分级模型(FSVM),验证了分级模型应用于苹果外观品质分级的有效性。
Apple Appearance Grading Detection Based on Machine Vision and Improved Support Vector Machine
In order to solve the problems of low efficiency and low accuracy in traditional apple appearance quality classifica-tion,an apple appearance classification method based on machine vision and improved support vector machine is proposed.The ap-ple color classification image database is established by video image method.The apple is separated from the background by mathe-matical morphology method,and the apple color,size,defect,texture and other appearance feature vectors are extracted as the in-put feature vectors of support vector machine(SVM).Aiming at the problems of noise influence and data imbalance,an improved adaptive penalty support vector machine classifier(DCSVM)is used to detect apple appearance quality classification.The results show that the classifier has a good classification effect(accuracy of 93.56%),which is better than the traditional support vector ma-chine classification model(FSVM),and verifies the effectiveness of the classification model applied to apple appearance quality classification.

machine visionapple appearance gradingadaptive punishmentsupport vector machine

纪家平、贺福强、谢丹

展开 >

贵州大学机械工程学院 贵阳 550025

机器视觉 苹果外观分级 自适应惩罚 支持向量机

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(3)
  • 20