首页|基于特征融合的多模态社交媒体情感分析

基于特征融合的多模态社交媒体情感分析

扫码查看
现代社交媒体赋予每个人多元化表达的机会,基于社交媒体的情感分析可以识别出用户当前的情感状态。然而,现有的情感分析方法大多使用单一模态进行分析,导致情感状态识别不准确。为解决该问题,论文提出了一种基于特征融合的多模态情感分类模型:首先,使用BERT模型提取文本情感特征,然后使用resNet152提取图像情感特征,利用"+"的结构取代了传统的拼接结构,并利用残差网络更加高质量地融合特征,最后探讨了图文的情感相关性对情感分析的影响。实验结果表明,在MVSA-simple和MVSA-multi公开数据集上,论文所提出的方法可以显著提高情感识别精度。论文提出方法将为多模态社交媒体情感分析提供新的思路。
Multiview Sentiment Analysis of Social Media Based on Feature Fusion
Modern social media gives everyone the opportunity for diverse expressions,and sentiment analysis based on social media can identify the current emotional state of users.However,most of the existing sentiment analysis methods use a single modal-ity for analysis,which leads to inaccurate sentiment state identification.To solve this problem,this paper proposes a multimodal sentiment classification model based on feature fusion.First,text sentiment features are extracted using the BERT model,then im-age sentiment features are extracted using resNet152,the traditional stitching structure is replaced by using the"+"structure,and the residual network is used to fuse features with higher quality.Finally,the impact of the sentiment relevance of the image text on the sentiment analysis is explored.The experimental results show that the proposed method can significantly improve the sentiment recognition accuracy on the MVSA-simple and MVSA-multi public datasets.The proposed method in this paper opens a new path-way for multimodal social media sentiment analysis.

sentiment analysisneutral networktext and imagesocial networkingresidual network

丁健宇、祁云嵩、赵呈祥

展开 >

江苏科技大学计算机学院 镇江 212003

情感分析 神经网络 图文融合 社交网络 残差网络

中国高校产学研创新基金项目

2019ITA01047

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(4)