首页|基于改进Faster R-CNN的多种类车灯检测方法

基于改进Faster R-CNN的多种类车灯检测方法

扫码查看
自主喷涂机器人可以实现各种类型汽车车灯的自动化喷涂,而基于机器视觉的车灯检测算法是该机器人的关键技术。针对目前缺乏深度学习算法在喷涂环境中检测车灯的问题,提出一种基于改进Faster R-CNN的检测算法。改进的算法中用密集残差网络De-ResNet代替原有的特征提取网络,融合了多层次的特征信息,增加了网络深度,避免了网络梯度的消失。同时利用距离交并比DIoU对原算法中的损失函数进行了改进,引入了良好的距离度量,进一步提高了检测精度。实验结果表明,改进算法的平均准确率为98。56%,单幅图像的平均识别时间为0。45 s,能够实现对车灯类型的有效识别,满足实时处理的要求。
Multi-type Auto Lamp Detection Method Based on Improved Faster R-CNN
Autonomous spray painting robots can realize the automatic spraying of various types of automobile lamps,and the lamp detection algorithm based on machine vision is the key technology of the robot.In view of the lack of deep learning algorithm to detect auto lamps in spraying environment,a detection algorithm based on improved Faster R-CNN is proposed.In the improved al-gorithm,the dense residual network(De-ResNet)is used to replace the original feature extraction network,which integrates multi-level feature information,increases the network depth,and avoids the disappearance of network gradient.At the same time,Distance-IoU(DIoU)is used to improve the loss function in the original algorithm.The improved IOU introduces a good distance measurement to further improve the detection accuracy.The experimental results show that the average accuracy of the improved al-gorithm is 98.56%,and the average recognition time of a single image is 0.45 s.It can realize the effective recognition of lamp types and meet the requirements of real-time processing.

spray painting robotobject detectionFaster R-CNNDenseNetloss function

郭碧宇、陈伟、张境锋、魏庆宇

展开 >

江苏科技大学电子信息学院 镇江 212100

喷涂机器人 目标检测 Faster R-CNN 密集连接网络 损失函数

镇江市国际科技合作项目镇江市产业前瞻与共性关键技术前期引导项目

GJ2020009GY2018018

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(4)