首页|GNMR:基于图神经网络的三维神经元几何形态检索

GNMR:基于图神经网络的三维神经元几何形态检索

扫码查看
神经元形态结构是分析神经元活动和发展功能的重要任务。如何有效识别不同形态的神经元是一个挑战。论文提出了一种基于图形卷积神经网络的三维神经元形态检索新方法(简称GNMR)。首先,采用子-父节点方案对三维神经元进行预处理,根据三维形态的空间几何结构,将一个三维神经元分别映射到X-Y、X-Z和Y-Z三个平面;其次,论文设计了一个GNMR来检索神经元形态,为了避免梯度爆炸和梯度消失的问题,在连接层增加了三层ReLU函数。最后,在NEU-1500数据集上对该方法进行了仿真,实验结果表明该方法能够有效识别三维神经元的形态,具有较高的检索准确率、精准率和召回率。
GNMR:3D Neuron Morphology Retrieval Based on Graph Neural Network
Neuron morphology and structure is an important task to analyze neuron activity and development function.How to effectively identify neurons of different shapes is a challenge.This paper proposes a new method of 3D neuron morphology retrieval based on graph convolutional neural network(GNMR for short).First,the child-parent node scheme is used to preprocess the three-dimensional neuron.According to the spatial geometric structure of the three-dimensional shape,a three-dimensional neuron is mapped to the three planes of X-Y,X-Z and Y-Z.Secondly,a GNMR is designed to retrieve Neuron shape,in order to avoid the problem of gradient explosion and gradient disappearance,three layers of ReLU function are added to the connection layer.Finally,the method is simulated on the NEU-1500 data set.The experimental results show that the method can effectively identify the shape of three-dimensional neurons,and has high retrieval accuracy,precision and recall.

neuron geometrygraph neural networkneuron recognitionReLU function

成普

展开 >

西安工程大学计算机科学学院 西安 710048

神经元几何形态 图神经网络 神经元识别 ReLU函数

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(4)