首页|一种室内确定目标的点云图像分割方法

一种室内确定目标的点云图像分割方法

扫码查看
针对室内确定目标点云图像分割应用场景,在语义分割层面,改进了PointNet++网络,为提高下采样的精度和效率,用重要性采样代替了最远点采样;为提升点云稀疏区域的特征提取效果,加入了包围球特征提取的阈值。在实例分割层面,为有效分割同类的多个实例重叠交错的点云图像,在DBSCAN粗聚类的基础上,使用最小割算法对每个实例进行逐一分离。实验结果表明,在语义分割层面,论文算法在分割准确率、训练耗时、点云稀疏区域的分割表现上均优于PointNet++;在实例分割层面,论文算法的总精确度比Jsnet网络提高了 6。04%。
A Point Cloud Image Segmentation Method for Indoor Determining Objects
Aiming at the application scenario of determining the target point cloud image segmentation in the room,at the se-mantic segmentation level,the PointNet++network is improved.In order to improve the accuracy and efficiency of down sampling,importance sampling is used to replace the farthest point sampling.To improve the feature extraction of the sparse area of the point cloud,threshold for feature extraction of the bounding ball is added.At the instance segmentation level,in order to effectively seg-ment the overlapping and interlaced point cloud images of multiple instances of the same type,on the basis of DBSCAN coarse clus-tering,each instance is separated one by one using the minimum cut algorithm.Experimental results show that at the level of seman-tic segmentation,the algorithm in this paper is superior to PointNet++in segmentation accuracy,training time-consuming,and seg-mentation performance in sparse point cloud regions.At the instance segmentation level,the total accuracy of the algorithm in this paper is 6.04%higher than that of the Jsnet network.

indoor determining objectspoint cloud segmentationPointNet++minimum cut

颜玉祥、徐晓龙、张辰旭、张卓、邵晓琦

展开 >

河海大学物联网工程学院 常州 213022

室内确定目标 点云分割 PointNet++ 最小割

国家重点研发计划国家自然科学基金项目

2018YFC040710161671202

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(4)