首页|基于图相似度的遥感图像道路图提取

基于图相似度的遥感图像道路图提取

扫码查看
遥感图像中的道路图是典型的曲线形结构,其提取是计算机视觉中的一个重要问题。对于这样的结构,拓扑是最重要的特征,尤其需要确保提取结果的连通性一致。在道路网中,一条道路的不连通完全改变导航结果。许多自动提取方法专注于利用更深的神经网络,但依然习惯性使用逐像素损失函数,如福卡损失。然而这种损失函数不适用于这个问题,因为它们无法反馈错误的拓扑。论文讨论一个面向曲线形结构连通性的损失函数,主要思想是根据曲线在图像背景区域之间造成的分隔来衡量曲线本身的连通性。显然,若所提取曲线断连,所产生的缝隙会导致位于曲线两侧的背景区域连通;损失函数旨在抑制背景区域之间此类不必要的连通,从而抑制预测结果中曲线的断连。此外,损失函数还惩罚背景区域错误的断开,从而减少预测曲线图中假正例的产生。在标准道路数据集上进行的实验结果表明,基于该损失函数的卷积网络改善了分割结果连通性,足以将其骨架化以生成与其它当前最先进网络媲美的道路图。该损失函数可以不加修改地放置于任何现有的深度卷积网络中。
Road Graph Extraction of Satellite Images Based on Graph Similarity
The road network in satellite images is a typical curved structure,and its extraction is an important problem in com-puter vision.For such a structure,topology is the most important feature and consistent connectivity between predictions and ground truth should be ensured.In the road network,the disconnection of a single road segment will completely change the navigation re-sult.Many extraction methods focus on using deeper neural networks,but still habitually use pixel-wise loss functions,which may-be not suitable for this problem due to the absence of topology supervision.In this paper,a connectivity-oriented loss is discussed.The main idea is to measure the connectivity of the road network mediately according to the separation caused by the road segment between the background regions.Obviously,if the extracted road is disconnected,the resulting gap will cause the connection of the background areas which should lie on both sides of the road.The loss function is designed to suppress such wrong connectivity be-tween background regions and thus suppress the disconnection of the road network.In addition,the loss function penalizes false dis-connections of the background region,thus reducing the generation of false positive examples in the predictions.It demonstrates this loss function improves the road network connectivity and it's enough to be skeletonize it to generate maps comparable to current most used networks.The loss function can be easily combined with any semantic segmentation network.

satellite imagesroad extractionconnectivity-oriented loss function

韩浩、刘传才

展开 >

南京理工大学计算机学院 南京 210042

遥感图像 道路提取 面向连通的损失函数

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(4)