首页|基于双阶段注意力机制循环神经网络的交通流预测

基于双阶段注意力机制循环神经网络的交通流预测

扫码查看
随着深度学习的发展,交通流预测的准确率越发提高,对时间序列的交通流预测进行研究,基于一种双阶段注意力机制循环神经网络模型(DA-RNN),以解决当前在交通流量的时间序列预测中存在的难以捕捉时间数据序列之间的相关性导致预测不够准确的问题,并解决实验中存在的过拟合现象。论文基于PEMS04数据进行实验并将预测结果与LSTM、GRU模型的预测结果进行对比,表明该时序预测模型具有良好的性能,可为交通管理与控制提供有效依据。
Traffic Flow Prediction Based on Two-Stage Attention Mechanism Recurrent Neural Network
With the development of deep learning,the accuracy of traffic flow forecasting is increasing.This article starts from the perspective of time series forecasting traffic flow,and is based on a two-stage attention mechanism recurrent neural network model(DA-RNN)to solve the current traffic flow.It is difficult to capture the correlation between time data series in the time series forecasting of traffic,which leads to the problem of inaccurate prediction and solves the problem of overfitting in the experiment.This paper conducts experiments based on PEMS04 data and compares the prediction results with the prediction results of LSTM and GRU models.It shows that this time series prediction model has good performance and can provide an effective basis for traffic man-agement and control.

deep learningrecurrent neural networkattention mechanismencoder-decoder

王健、王峥

展开 >

武汉邮电科学研究院 武汉 430074

南京烽火天地通信科技有限公司 南京 210019

深度学习 循环神经网络 注意力机制 编码器-解码器

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(4)