首页|基于前景理论和均衡接近度的毕达哥拉斯群决策方法

基于前景理论和均衡接近度的毕达哥拉斯群决策方法

扫码查看
针对属性值为毕达哥拉斯模糊集且专家权重和属性权重均完全未知的多属性群决策问题,提出了结合前景理论和灰色均衡接近度的多属性决策方法.考虑到毕达哥拉斯模糊集表达犹豫度的优势和群体决策的特点,给出了一种新的专家权重计算方法,并利用离差最大化法求出属性权重;运用正、负理想方案作为决策参考点,基于前景理论和灰色均衡接近度计算毕达哥拉斯模糊环境下的前景价值函数,最终获得各方案的收益损失比,以此确定方案的优劣排序.通过实例分析和方法对比,验证了此方法的有效性和合理性.
Group Decision-Making Method of Pythagorean Fuzzy Set Based on Degree of Balance and Approach and Prospect Theory
For the Pythagorean fuzzy set multi-attribute group decision-making problem where the attribute weights and the expert weights are completely unknown,a multi-attribute decision-making method combining prospect theory and degree of bal-ance and approach is proposed.Considering the advantages of Pythagorean fuzzy set in expressing hesitation degree and the charac-teristics of group decision-making,a new expert weight calculation method is proposed,and the attribute weight is obtained by us-ing the maximizing deviation method.Using positive and negative ideal solutions as decision reference points,the prospect value function under Pythagorean fuzzy environment is calculated based on prospect theory and degree of balance and approach,and final-ly the benefit loss ratio of each solutions is obtained,so as to determine the ranking of alternatives.The effectiveness and rationality of this method are verified by example analysis and method comparison.

Pythagorean fuzzy setdegree of balance and approachprospect theorygroup decision

张柏栋、王应明

展开 >

福州大学经济与管理学院 福州 350108

毕达哥拉斯模糊集 均衡接近度 前景理论 群体决策

国家自然科学基金项目

61773123

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(5)
  • 21