首页|改进KCF的尺度自适应目标跟踪算法研究

改进KCF的尺度自适应目标跟踪算法研究

扫码查看
针对KCF跟踪算法在目标跟踪过程中存在目标尺度变化时检测精度低、目标遮挡时跟踪容易丢失等问题,提出了SMAKCF(Scale-Adaptive Multiple-Feature Anti-Occlusion KCF)跟踪算法,该算法同时优化了KCF算法中的尺度响应、特征选择及模板更新策略,融合HOG特征及CN特征,加入尺度估计滤波器并利用APCE判据改进位置滤波器的更新方式,同时引入了一个检测模块对不可靠跟踪结果进行重检测.在Visual Tracker Benchmark的50个测试视频序列上进行实验来评估算法的性能,实验表明,SMAKCF算法能够有效地解决目标的尺度变化及遮挡问题,提高跟踪算法在长时目标跟踪过程中的性能.
Research on Scale-Adaptive Object Tracking Algorithm by Improving KCF
The SMAKCF(Scale-Adaptive Multiple-Feature Anti-Occlusion KCF)is proposed to solve the problem that the KCF algorithm can not adapt to the object scale and occlusion when tracking an object.The SMAKCF algorithm optimizes simultane-ously several problems including scale response,feature extraction,and update strategy.To be specific,a fusion feature is put for-ward combing HOG features and CN features efficiently,then a scale estimation filter is added and the APCE criterion is introduced to improve the updating method of the position estimation filter.Besides,an extra detection module is designed for re-detecting the object which is unreliably detected.Experiments are conducted on 50 test video sequences of Benchmark to evaluate the algorithm performance.It is indicated that SMAKCF algorithm can overcome difficulty in the scale change and occlusion of the object,the tracking ability in the long-term object tracking process is enhanced significantly.

kernelized correlation filtersscale variationsobject occlusionre-detecting

刘思思、陈忠、徐雪茹、吴亮

展开 >

华中科技大学人工智能与自动化学院 武汉 430074

华中科技大学外国语学院 武汉 430074

核相关滤波 尺度变化 目标遮挡 重检测

民用航天十三五预先研究项目国产卫星应急观测与信息支持关键技术项目

D040401-w05B0302

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(5)
  • 16