首页|结合跨层特征融合网络和非局部的识别方法

结合跨层特征融合网络和非局部的识别方法

扫码查看
在以往的方法中,针对于图像识别,主要目标是提取出足够多的具有区分度的局部关键特征。由于细粒度图像分类是对同属于一个大类下面的具体小类别的细分,所以不同的细类之间差别很小,要想提高准确率,更需要找到具有辨别力度的局部区域。论文使用了目标-导航网络,来筛选出前k个最具有判别力的局部区域块,然后针对于筛选出来的k个不同的区域块,利用非局部模块的思想,捕捉不同局部区域之间的联系,更加充分地利用了图像信息,以此来提高精度。与此同时,在残差网络中,使用了卷积注意模块捕捉不同通道注意力特征之间的联系,且在最后的全连接层处改进了网络架构,使用跨层特征融合的方法来代替了简单的级联。考虑到在细粒度识别中,图像的标注需要耗费非常多的人力物力,所以论文中提出的方法,是自监督的。
Combining Cross-layer Feature Fusion Network and Non-local Recognition Method
In the methods previously used for image recognition,the primary objective is to extract a large number of local key features with distinctiveness.Due to the nature of fine-grained image classification,which is the subdivision of specific subcatego-ries under a broader category,there is only a minimal difference between various fine categories.To enhance accuracy,it becomes crucial to identify local regions with significant discriminative capabilities.In their work,the authors employed a target-navigation network to select the top k most discriminative local region blocks.Following this selection,they leveraged the concept of non-local modules to capture the interconnections among these different local regions,thus utilizing image information more comprehensively to improve precision.Concurrently,in the residual networks,convolutional attention modules are utilized to seize the interrelations among different channel attention features.Moreover,at the final fully connected layer,they innovated the network architecture by implementing cross-layer feature fusion instead of simple cascading.Considering the extensive human and material resources re-quired for labeling images in fine-grained recognition,the authors propose a self-supervised method.

fine-grained image classificationnon-local methodcross-layer feature fusionconvolutional block attention networklocation target area

胡紫瑄

展开 >

中国石油大学(华东)计算机学院 青岛 266400

细粒度图像分类 非局部方法 跨层特征融合 卷积块注意力网络 定位目标区域

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(5)
  • 21