首页|基于SMOTER和极限学习机的瓦斯浓度预测

基于SMOTER和极限学习机的瓦斯浓度预测

扫码查看
瓦斯灾害一直是制约煤矿安全生产的重要因素。准确地预测出未来一小段时间瓦斯浓度的变化趋势,能够有效避免煤矿安全事故的发生,为瓦斯灾害防治和煤矿安全生产提供参考信息。大部分时间的瓦斯浓度都处于正常的水平,造成原始的瓦斯浓度数据集分布不平衡。论文提出了一种基于SMOTER和极限学习机(ELM)的瓦斯浓度预测方法。首先通过关联性函数将数据集划分为稀有值集和常规值集,然后通过SMOTER算法生成稀有值样本来处理不平衡数据集,最后利用平衡后的数据集训练ELM瓦斯浓度预测模型。该方法通过SMOTER算法来处理回归任务的数据不平衡问题,使得训练出的瓦斯浓度预测模型在稀有值样本上也能准确地预测。通过与现有的方法进行对比实验,结果表明论文方法的预测误差更小。
Gas Concentration Prediction Based on SMOTER and Extreme Learning Machine
Gas disaster has always been an important factor restricting the safe productivity of coal mines.Accurately predict-ing the trend of gas concentration in a near future can effectively avoid coal safety accidents and provide reference information for preventing gas disaster and the safe productivity of coal mines.The gas concentration in most time is maintained at the normal level,which results in the imbalanced distribution of the original gas concentration data.This study proposes a gas concentration prediction method based on SMOTER and extreme learning machine(ELM).Firstly,the relevance function is used to separate the data set in-to rare value cases and normal value cases,and then SMOTER algorithm is used to generate rare value cases to process imbalance data set.Finally,the balanced data set is used to train the ELM gas concentration prediction model.The proposed method uses SMOTER algorithm to address the imbalance problem in data of regression task,which makes the gas concentration prediction mod-el can be accurately predicted on the rare value cases.Compared with the existing methods,the experimental results show that the prediction error of the proposed method is smaller.

gas concentration predictionsafe productivity of coal minesSMOTERextreme learning machineregression

周明、于化龙

展开 >

江苏科技大学计算机学院 镇江 212003

瓦斯浓度预测 煤矿安全 SMOTER 极限学习机 回归

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(5)
  • 15