首页|面向物流标书关键信息的自动提取方法

面向物流标书关键信息的自动提取方法

扫码查看
物流标书信息识别是物流企业精准获取商业情报的一项重要手段。物流招标公告作为情报来源,存在文本不规范、领域标签不足、抽取难度大等问题,因此目前尚缺乏对物流标书领域命名实体识别的研究。为准确识别物流标书中的有效信息,该研究以中国物流招标网和物通网获取的物流招标公告作为实验数据集,构建了物流标书领域命名实体识别语料库,并提出一种融合BERT预训练的BiLSTM-CRF深度学习模型,以实现对招标公司、运输地点和运输项目三类实体的识别。实验结果表明,论文所提模型不但具有较优的实体识别准确度,同时还具备了较强的稳定性。
Automatic Extraction Method of Key Information from Logistics Bidding Documents
Logistics bid information identification is an important means for logistics companies to accurately obtain business intelligence.As a source of information,logistics bidding announcements have problems such as irregular text,insufficient label-ing,and difficulty in extracting.Therefore,there is a lack of named entity recognition in the field of logistics bidding documents.To accurately identify the effective information,this study uses logistics bidding announcements obtained from China Logistics Bidding Network and Wutong Network as experimental dataset,then constructs a corpus about logistics bidding documents,and proposes a BERT-BiLSTM-CRF model to identify the tenderee,shipping location and shipping item three entities in the logistics bidding docu-ments.Experimental results show that the model proposed in this paper not only has better entity recognition accuracy but also has strong stability.

logistics bidding documentsnamed entity recognitiondeep learningBERTBiLSTM-CRF

马静、俞瑛

展开 >

南京航空航天大学经济与管理学院 南京 211106

浙江理工大学科技与艺术学院 绍兴 312300

物流标书 命名实体识别 深度学习 BERT BiLSTM-CRF

国家自然科学基金面上项目国家社会科学基金重大招标项目南京航空航天大学前瞻性发展策略研究基金项目

7217408620ZDA092NW2020001

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(5)
  • 16