首页|基于特征增强和分组模块的车型精细识别

基于特征增强和分组模块的车型精细识别

扫码查看
针对车型种类多、差异小,模型复杂,识别精度低的问题,提出一种基于特征增强和分组模块的车型精细识别方法,在ResNet网络基础上改进,在卷积块中加入多尺度通道域和空间域的注意力机制,增强对重要的特征提取,并将多通道特征图进行分组,根据分组损失函数不断优化分组,通过加权方式结合KL(Kullback-Leibler)散度损失函数和交叉熵损失函数,有助于网络学习类内差异小、类间差异大的特征。该方法在Stanford cars-196数据集和自制数据集上进行测试,验证了所提模型的有效性。
Fine Vehicle Recognition Based on Feature Enhancement and Grouping Module
In order to solve the problems of many types of vehicles,small differences,complex models and low recognition ac-curacy,a fine vehicle recognition method based on feature enhancement and grouping module is proposed,which is improved on the basis of ResNet network.The attention mechanism of multi-scale channel domain and spatial domain is added to the convolution block to enhance the extraction of important features,and the multi-channel feature graphs are grouped and continuously optimized according to the grouping loss function.KL(Kullback-Leibler)divergence loss function and cross entropy loss function are com-bined by weighted method.The method is tested on Stanford cars-196 dataset and self-made dataset to verify the effectiveness of the proposed model.

fine vehicle identificationmulti-scaleattention mechanismfeature enhancementloss function

郑秋梅、曹文龙、王风华

展开 >

中国石油大学(华东)计算机科学与技术学院 青岛 266580

车型精细识别 多尺度 注意力机制 特征增强 损失函数

国家自然科学基金项目国家自然科学基金项目

5207434151874340

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(5)
  • 17