首页|基于BiGRU-多头注意力的电商评论情感分类

基于BiGRU-多头注意力的电商评论情感分类

扫码查看
针对电商评论情感分类存在的模型参数多、受参数随机初始化影响等问题,论文提出双向门控循环神经网络(BiGRU)与多头注意力结合的模型用于电商评论情感分类。首先使用BiGRU模型从正反双向提取更全面的语义信息;而后在多个注意力头上并行计算提取出注意力信息;最后将融合两方面信息的特征向量输入到分类器中,完成该模型的构建。对模型进行参数调试,并以准确率和交叉熵为评价标准,对比双向长短期记忆神经网络(BiLSTM)、BiGRU、BiLSTM-单头注意力、BiGRU-单头注意力、BiLSTM-多头注意力及BiGRU-多头注意力6种同系列的主流深度学习模型在电商评论数据上的情感分类效果。结果表明,在相同数据集上,论文构建的模型准确率达到89。91%,相较于其他模型有更好的准确率表现。
Method of the E-commerce Review Sentiment Classification Based on BiGRU-multi-head Attention
In view of the problems in e-commerce review sentiment classification such as numerous model's parameters and parameters random initialization,a combined model based on bidirectional gated recurrent neural network(BiGRU)and multi-head attention is proposed.First,BiGRU model is used to extract more comprehensive semantic information from the positive and negative bidirections.After that,the attention information is extracted by parallel computation in several attention heads.Final-ly,the feature vectors combining the two aspects of information is input into the classifier,and this model is constructed.The param-eters of the model are debugged.The accuracy rate and cross entropy are used as evaluation criteria to compare the sentiment classifi-cation effect of four mainstream deep learning models on the e-commerce review data.These models to be compared include bidirec-tional long short-term memory neural network(BiLSTM),BiGRU,BiLSTM and single-head attention,BiGRU and single-head at-tention,BiLSTM and multi-head attention,and BiGRU and multi-head attention.The results show that on the same datasets,accu-rary of the proposed model has reached 89.91%,and has better performance in accuracy rate and cross entropy compared with oth-ers.

BiGRUmulti-head attentionsentiment classificatione-commerce review data

张华琛、于威威

展开 >

首都经济贸易大学金融学院 北京 100070

首都经济贸易大学统计学院 北京 100070

双向门控循环神经网络 多头注意力 情感分类 电商评论数据

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(5)
  • 16