首页|基于深度学习的风力机叶片表面缺陷检测研究

基于深度学习的风力机叶片表面缺陷检测研究

扫码查看
风力机叶片损伤的检测主要依靠目测和敲击,不仅效率低下而且很容易受到人主观判断因素的影响。由此,论文提出一种基于Rectified Adam优化器的ResNet50卷积神经网络的图像识别方法,对风力机叶片损伤图像进行分类识别。利用无人机对风力机叶片损伤位置进行拍摄,对采集到的图像进行筛选、增强得到叶片四种损伤类型的数据集,对图片进行灰度处理、去噪、阈值分割去除图片背景信息的影响。分析了VGG19、GoogleNet、ResNet50三种网络模型对于风力机叶片损伤类型的识别准确率,选择了分类准确度较高的ResNet50网络模型。对比实验了Adam和RAdam两种优化器下ResNet50对于风机叶片损伤识别的准确率,结果显示RAdam优化器下的ResNet50网络模型性能更优,为风力机叶片无损检测的自动化和数字化提供参考。
Research on Detection of Surface Defects of Wind Turbine Blades Based on Deep Learning
The detection of wind turbine blade damage mainly relies on visual inspection and percussion,not only inefficient,but also easily affected by human subjective judgment factors.To solve these problems,this paper proposes an image recognition method based on ResNet50 convolutional neural network based on Rectified Adam(RAdam)optimizer,classification and recogni-tion of wind turbine blade damage images.Drones is used to take pictures of the damage location of wind turbine blades,the collect-ed images are filtered and enhanced to obtain a data set of four types of leaf damage.The image is subjected to undergoes grayscale processing,denoising,and threshold segmentation to remove the influence of the background information of the image.The recogni-tion accuracy of the three network models of VGG19,GoogleNet,and ResNet50 are analyzed for the type of wind turbine blade dam-age.The ResNet50 network model with higher classification accuracy is selected.Compared and experimented the accuracy of ResNet50 for wind turbine blade damage recognition under the two optimizers of Adam and RAdam,the results show that the perfor-mance of the ResNet50 network model under the RAdam optimizer is better,a reference is provided for the automation and digitiza-tion of the non-destructive testing of wind turbine blades.

image identificationneural networksResNet50classificationRAdam

蒙建国、任其科、王凯、赵祥、石炜

展开 >

内蒙古科技大学机械工程学院 包头 014010

图像识别 神经网络 ResNet50 分类 RAdam

2018年内蒙古自治区自然科学基金项目

2018LH050248

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(5)
  • 29