首页|一种基于CP-U-Net的鸡部位分割方法

一种基于CP-U-Net的鸡部位分割方法

扫码查看
鸡部位分割是鸡肉分体的主要任务,论文以鸡部位分割为目的,提出了一种基于U-Net的鸡部位图像分割算法。根据鸡部位检测的需求,选择了合适类型的工业相机、摄像头、光源和PC机构成鸡部位图像采集系统。采集3000张鸡部位图像,然后进行数据增强扩充,构建了鸡部位数据集;构建了一种基于CP(Chicken parts)-U-Net鸡部位图像分割模型,提取鸡部位特征,为了实现鸡部位图像的端到端语义分割,采取了以下步骤:首先通过池化计算,能够获得鸡部位的深层特征和浅层。接着,通过多次的反卷积处理,能够得到特征的融合。最后生成了鸡部位区域的二值图像。为了评估分割性能,采用平均交并比(MIoU)、均像素精度(MPA)和精度(PA)这三种评判标准,将CP-U-Net计算网络与三种经典算法进行了比较。实验表明:CP-U-Net在进行鸡部位的语义分割时PA、MPA、MIou分别为93。65%,89。12%,85。37%。比较对比的三种其他图像语义分割方法分别高出11。23%,8。74%,6。68%,且处理单幅鸡部位图像时间比SegNet缩短44 ms。
A Chicken Part Segmentation Method Based on CP-U Net
Chicken part segmentation is the main task of chicken segmentation.This article proposes a chicken part image seg-mentation algorithm based on U-Net with the aim of chicken part segmentation.According to the needs of chicken part detection,appropriate types of industrial cameras,cameras,light sources,and PC mechanisms are selected to form an image acquisition sys-tem for chicken parts.3000 images of chicken parts are collected,and then data augmentation and expansion are carried out to con-struct a chicken part dataset.A CP(Chicken parts)-U Net chicken part image segmentation model is constructed to extract chick-en part features.In order to achieve end-to-end semantic segmentation of chicken part images,the following steps are taken.First,through pooling calculation,deep and shallow features of chicken parts can be obtained.Then,through multiple deconvolution pro-cesses,feature fusion can be obtained.Finally,a binary image of the chicken part area is generated.In order to evaluate the segmen-tation performance,three evaluation criteria are used,which are mean intersection union(MIoU),mean pixel precision(MPA),and precision(PA).The CP-U Net computational network is compared with three classic algorithms.The experiment shows that the PA,MPA,and MIou of CP-U Net for semantic segmentation of chicken parts are 93.65%,89.12%,and 85.37%,respectively.The three other image semantic segmentation methods compared are 11.23%,8.74%,and 6.68%higher,respectively,and the process-ing time for a single chicken part image is 44 ms shorter than SegNet.

chicken partssemantic segmentationU-Netdeep and shallow feature fusion

肖名志、张振寰、刘文璇、钟珞

展开 >

武昌首义学院信息科学与工程学院 武汉 430064

武汉理工大学计算机与人工智能学院 武汉 430070

鸡部位 语义分割 U-Net 深层浅层特征融合

湖北省重点研发项目湖北省自然科学基金项目

2021BAA0302021CFB513

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(5)
  • 21