首页|基于GAN的场景文本艺术风格转换

基于GAN的场景文本艺术风格转换

扫码查看
图像风格转移是将风格样式迁移到源图像中的目标区域以创建艺术排版的任务,论文研究如何对场景文本图像中的文字区域进行风格转换,以实现自动对广告或海报中的文字进行风格转换,降低艺术创作的成本并提高艺术风格的多样性。由于场景文本图像中不同因素之间存在复杂的相互作用,先前很少有在保留原始文字内容和背景的同时进行文本风格转换的工作。该文提出了一个三阶段的框架,这是首个直接在原图进行程度可控的风格转换的网络,将原本对单个二值化字符进行风格转换的方法扩展到场景文本图像上的文字,并涉及到了图像修复的相关知识。首先使用风格转换网络只对场景文本图像中的文本风格进行转换,后利用字符擦除网络擦除原始字符重建背景图像,最后融合部分利用生成的前景图像和擦除字符后的背景图像生成最终风格转换后的结果图像。论文通过大量实验证明了该方法的有效性。
GAN-Based Scene Text Artistic Style Transfer
Image style transfer is the task of transferring the style style to the target area in the source image to create artistic typesetting.This paper studies how to transform the style of the text area in the scene text image,in order to achieve automatic adver-tising or posters in the text for style conversion,reduce the cost of artistic creation and improve the diversity of artistic style.Due to the complex interaction between different factors in the scene text image,there are few previous work on text style conversion while retaining the original text content and background.This paper presents a three-stage framework which is the first network to carry out a degree-controlled style conversion directly in the original image,the method of style conversion for single binary character is extended to the text on the scene text image,and the related knowledge of image restoration is involved.First,the style conversion network is used to transform only the text style in the scene text image,and then the original character is erased by the character erasing network to reconstruct the background image.Finally,the fusion part uses the generated foreground image and the back-ground image after erasing the characters to generate the final image after the style conversion.In this paper,a large number of ex-periments are carried out to prove the effectiveness of the method.

deep learningGANscene text imageimage style transferfont style tranfercharacter erasure

刘冰

展开 >

中国石油大学(华东)计算机科学与技术学院 青岛 266580

深度学习 生成对抗网络(GAN) 场景文本图像 图像风格迁移 字体风格转换 字符擦除

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(5)
  • 20