首页|基于多模型BP神经网络算法的湿化器的湿度预测控制

基于多模型BP神经网络算法的湿化器的湿度预测控制

扫码查看
高流量呼吸湿化器的湿度控制效果,是衡量湿化器品质的重要标准,由于湿化罐出气口没有使用湿度传感器实时采集数据,无法对湿化器出气口的空氧混合气体的湿度做实时监测,所以不能构建一个完整的闭环负反馈的系统,只能构建一个基于预估数据进行控制的开环系统。对于湿化器的湿度预测控制的问题,提出基于多模型切换的BP神经网络算法预测控制,在目标温度平衡点进行线性化,根据流量的变化选择模型。仪器测试实验表明:湿化器的湿度预测控制系统有更高的控制品质,适用于不同温度,不同流量的湿化模式。
Humidity Predictive Control of Humidifier Based on Multi-model BP Neural Network Algorithm
The humidity control effect of high-flow respiratory humidifier is an important standard to measure the quality of hu-midifier.Since humidity sensor is not used to collect data in real time at the air outlet of humidifier,the humidity of air-oxygen mix-ture at the air outlet of humidifier cannot be monitored in real time,so a complete closed-loop negative feedback system cannot be built.Only an open-loop system can be constructed with control based on estimated data.For humidity predictive control of humidifi-er,a BP neural network algorithm based on multi-model switching is proposed,which is linearized at the target temperature equilib-rium point,and the model is selected according to the change of flow rate.The experimental results show that the humidity predic-tive control system of humidifier has higher control quality and is suitable for different temperature and flow rate.

wet processhumidity predictionmultiple modelBP neural network algorithmlinearization

苏健

展开 >

沈阳化工大学信息工程学院 沈阳 110000

湿化器 湿度预测 多模型 BP神经网络算法 线性化

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(5)
  • 15