首页|一种基于混合注意力的高效阴影检测算法

一种基于混合注意力的高效阴影检测算法

扫码查看
在计算机视觉任务中,阴影像素的存在会对算法效果产生不利的影响,因此提升阴影检测网络的性能和效果具有一定的研究意义。现有阴影检测算法运用注意力机制对跨通道特征以及全局像素信息的提取不够充分,针对此问题,论文通过研究阴影特征信息,结合混合注意力机制的设计思路,搭建融合通道注意力和空间注意力的全新网络Res-CCNet,并使用密集连接和特征融合重用被忽略特征。在阴影检测数据集SBU和UCF上实验,使用评价指标SER、NER和BER进行验证。结果表明,该网络算法具备高效的阴影检测能力和一定的应用前景。
An Efficient Shadow Detection Algorithm Based on Hybrid Attention Mechanism
In the computer vision task,the presence of shadow pixels will have a negative impact on algorithms.Therefore,it is of certain research significance to improve the performance and effect of shadow detection network.The existing shadow detection algorithms using attention mechanism are not sufficient to extract cross-channel features and global pixel information.To solve this problem,this paper studies shadow feature information and combines the design idea of hybrid attention mechanism to build a new network Res-CCNet that integrates channel attention and spatial attention,and uses dense connection and feature fusion to reuse ne-glected features.Experiments are conducted on datasets SBU and UCF with three different evaluation criteria SER,NER and BER.The results show that the network algorithm has efficient shadow detection capabilities and application prospects.

shadow detectionattention mechanismCNNfeature extractionsemantic information

戴晓峰、黄刚、刘帅

展开 >

南京邮电大学计算机学院 南京 210000

阴影检测 注意力机制 卷积神经网络 特征提取 语义信息

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(6)