首页|基于迁移学习与回译的航行通告双向机器翻译模型

基于迁移学习与回译的航行通告双向机器翻译模型

扫码查看
为提高航行通告领域内机器翻译的专业度及准确率,针对航行通告领域机器翻译平行语料受限问题,提出了一种基于迁移学习和回译的航行通告双向机器翻译模型。在训练人民日报机器翻译的基础上,将训练得到的参数,迁移到部分回译后的航行通告机器翻译模型的编码端和解码端,来对两端的参数初始化,通过实验对两端参数进行调整得到航行通告双向机器翻译模型。实验表明,迁移学习和部分回译这一数据增强策略的引入提升了模型的鲁棒性,提升了翻译质量,汉译英模型的翻译评估指标BLEU值提高了2。08%,英译汉模型的翻译评估指标BLEU值提高了3。12%。
Two-way Machine Translation Model of Notices to Navigation Based on Transfer Learning and Back Translation
In order to improve the professionalism and accuracy of machine translation in the field of notice to air navigation,a two-way machine translation model of notice to air navigation based on transfer learning and back translation is proposed to solve the problem of the parallel corpus of machine translation in the field of air notice.On the basis of training the machine translation of People's Daily,the parameters obtained from the training are transferred to the encoding end and the decoding end of the machine translation model of the partly back-translated announcements to initialize the parameters at both ends,and adjust the parameters at both ends through experiments.The two-way machine translation model of the notice of air travel is obtained.Experiments show that the introduction of the data enhancement strategy of transfer learning and partial back translation improves the robustness of the mod-el and improves the translation quality.The BLEU value of the translation evaluation index of the Chinese-to-English model has in-creased by 2.08%.The BLEU value of the translation evaluation index increased by 3.12%.

machine translationback translationtransfer learningrobustnessBLEU value

罗银辉、李荣枝、潘正宵、宋文韬

展开 >

中国民用航空飞行学院计算机学院 广汉 618307

北京航空航天大学宇航学院 北京 100191

机器翻译 回译 迁移学习 鲁棒性 BLEU值

国家自然科学基金项目

U2033213

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(6)