首页|基于Stacking的套损预测方法研究

基于Stacking的套损预测方法研究

扫码查看
根据油气生产过程中的套管损坏影响因素众多、数据复杂等特点,通过数据预处理、随机森林重要性分析等技术对现场数据进行分析与整合,采用特征工程的方法处理缺失值并选取特征参数。针对传统机器学习模型对套损预测不佳的问题,提出采用双层Stacking模式集成学习预测模型;该模型采用随机森林、支持向量机、梯度提升决策树和K近邻算法为基模型,逻辑回归为元模型,以此构建泛化能力更强的套损预测模型。结果表明,该模型较于单一的机器学习模型准确率与F1值均有提升,该模型最终的准确率达到89。21%。
Research on Prediction Method of Casing Damage Based on Stacking
According to the characteristics of many factors affecting casing damage and complex data in the oil and gas produc-tion process,the field data is analyzed and integrated through data preprocessing,random forest importance analysis and other tech-nologies,and the method of feature engineering is used to process missing values and select feature parameters.Aiming at the prob-lem that traditional machine learning models are not good at predicting the set loss,a two-layer stacking mode ensemble learning prediction model is proposed.The model uses random forest,support vector machine,gradient boosting decision tree and K-nearest neighbor algorithm as the base model,and logistic regression as the meta-model to build a more generalized set loss prediction mod-el.The results show that the model has improved accuracy and F1 value compared with a single machine learning model,and the fi-nal accuracy of the model reaches 89.21%.

ensemble learningcasing damagecasing damage predictionStacking model fusion

赵建民、张珺博、崔佳鑫

展开 >

东北石油大学计算机与信息技术学院 大庆 163318

集成学习 套管损耗 套损预测 Stacking模型融合

国家自然科学基金项目

51774090

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(6)