首页|基于1D-MSCNN的轴承剩余寿命预测

基于1D-MSCNN的轴承剩余寿命预测

扫码查看
轴承是旋转机械设备的基本部件,其状态与设备的安全运行密切相关。准确预测轴承的剩余使用寿命可以提高设备工作的可靠性,同时也可以为设备维护提供实用参考。卷积神经网络(Convolutional Neural Network,CNN)由于其较强的特征学习能力,在RUL预测方面取得了一定的成绩。然而,传统的卷积神经网络的固定尺寸卷积核难以学习到复杂信号的局部和全局特征。因此,论文提出了一种一维多尺度卷积神经网络(1D-Multi Scale Convolutional Neural Network,1D-MSCNN)预测模型用以实现轴承退化状态的准确估计。首先,利用一次退化函数,建立有效的轴承健康状态指标(Health Index,HI)。其次,采用多尺度卷积结构充分提取原始数据的深层代表性特征。最后,通过对PRONOSTIA数据集的实例研究,验证了所提出1D-MSCNN模型的有效性,并与其他预测方法进行了对比,验证了论文方法的有效性和优越性。
Prediction of Remaining Bearing Life Based on 1D-MSCNN
Bearings are the basic components of rotating machinery and equipment,and their status is closely related to the safe operation of the equipment.Accurately predicting the remaining service life of the bearing can improve the reliability of the equipment,and at the same time provide a practical reference for equipment maintenance.Convolutional Neural Network(CNN)has achieved certain results in RUL prediction due to its strong learning ability.However,the fixed-size convolution kernel of the traditional convolutional neural network is difficult to learn the local and global features of complex signals.Therefore,this paper proposes a one-dimensional multiscale convolutional neural network(1D-Multi Scale Convolutional Neural Network,1D-MSCNN)prediction model to achieve accurate estimation of bearing degradation state.First,a degenerate function is used to establish an ef-fective health index(HI)of the bearing.Secondly,the multi-scale convolution structure is used to fully extract the deep representa-tive features of the original data.Finally,the effectiveness of the proposed 1D-MSCNN model is verified through a case study on the PRONOSTIA data set,and compared with other prediction methods to verify the effectiveness and superiority of this method.

remaining useful lifehealth indicatormulti-scale convolutionrepresentative feature

贾文超

展开 >

兰州理工大学电气工程与信息工程学院 兰州 730050

剩余寿命 健康状态指标 多尺度卷积 代表性特征

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(6)