首页|基于深度学习的中文短文本多标签分类模型

基于深度学习的中文短文本多标签分类模型

扫码查看
目前,中文短文本因其长度短、结构多样和缺乏上下文等特点,常规多标签分类算法无法对其有效区分.针对以上问题,论文提出一种基于深度学习的中文短文本多标签分类模型CRC-MHA.CRC-MHA模型在文本表示层摒弃常规使用Word2vec进行静态词嵌入的方式,采用BERT对输入句子进行动态词嵌入,借助海量预训练文本的优势更好地表征文本的上下文语义,同时在特征提取层设计了一种结合CNN、RCNN和多头自注意力机制的并行特征提取策略,加强捕捉文本内部的关键特征来提升多标签分类效果.实验结果表明,CRC-MHA模型在评价指标加权平均F1值上较BERT模型提高1.95%,较BERT-CNN模型提高0.42%,较BERT-RCNN模型提高0.34%,验证了模型的有效性.
Multi-label Classification Model of Chinese Short Texts Based on Deep Learning
Currently,short Chinese texts cannot be effectively distinguished by conventional multi-label classification algo-rithms due to their short length,diverse structure and lack of context.In view of the above problems,this paper proposes a multi-la-bel classification model CRC-MHA for Chinese short texts based on deep learning.The CRC-MHA model abandons the convention-al way of using Word2vec for static word embedding in the text representation layer,and uses BERT to perform dynamic word em-bedding for the input sentence.With the advantage of massive pre-training text,it can better characterize the contextual semantics of the text.At the same time,it designs a parallel feature extraction strategy combining CNN,RCNN and multi-head self-attention mechanism in the feature extraction layer,which enhances the capture of key features inside the text to improve the multi-label clas-sification effect.The experimental results show that the weighted average F1 value of the evaluation index of the CRC-MHA model is 1.95%higher than that of the BERT model,0.42%higher than that of the BERT-CNN model,and 0.34%higher than that of the BERT-RCNN model,which verifies the effectiveness of the model.

multi-label classificationChinese short textdynamic word embeddingfeature extraction

曹珍、郭攀峰

展开 >

武汉邮电科学研究院 武汉 430074

多标签分类 中文短文本 动态词嵌入 特征提取

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(6)
  • 6