首页|基于参数优化随机森林模型的消费行为预测算法

基于参数优化随机森林模型的消费行为预测算法

扫码查看
在大数据与线上营销的影响下,零售企业也积极采取大数据智能营销方案。为了提高零售企业在消费行为预测中的精准率,从而提高企业销售额获取更大利润,从消费数据、会员数据和商品数据中通过信息增益的方法提取特征,构建基础特征群,挖掘潜在信息。利用遗传算法对随机森林的参数进行优化,建立基于参数优化的随机森林消费行为预测模型,实验数据来自某线下连锁药店37天的消费记录。将实验模型和原始随机森林模型、决策树模型、支持向量机模型和XG-Boost模型进行实验对比,实验结果表明遗传算法参数优化后的随机森林消费行为预测模型的精准率和AUC值均高于其他四种模型。
Consumption Behavior Prediction Algorithm Based on Parametric Optimization Stochastic Forest Model
Under the influence of big data and online marketing,retail enterprises also actively adopt big data intelligent mar-keting scheme.In order to improve the accuracy of retail enterprises in the prediction of consumer behavior,so as to improve the sales of enterprises and obtain greater profits,it extracts features from consumption data,member data and commodity data through the method of information gain,constructs basic feature groups,and combines features to mine potential information.Genetic algo-rithm is used to optimize the parameters of random forest,and construct a stochastic forest consumption behavior prediction model based on parameter optimization.The experimental data comes from 37 day consumption records of an offline chain drugstore.The experimental model is compared with the original random forest model,decision tree model,SVM model and XGBoost model,the experimental results show that the accuracy and AUC value of the model are higher than the other four models.

behavior predictioninformation gain(IG)genetic algorithmrandom forestparameter optimization

杨千帆、李涛、贾志强

展开 >

武汉科技大学计算机科学与技术学院 武汉 430065

行为预测 信息增益 遗传算法 随机森林 参数优化

国家自然科学基金项目湖北省教育厅重大项目

6170238317ZD014

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(7)