首页|基于改进的ShuffleNetV2模型的农作物病害识别

基于改进的ShuffleNetV2模型的农作物病害识别

扫码查看
针对传统数字图像处理技术的底层特征提取复杂,卷积神经网络的识别方法参数多、计算量大、网络结构复杂、实用性不高等问题,论文以构建一个能用于移动端应用的农作物病害识别模型为目标,以苹果黑星病、苹果锈病、苹果健康三种叶部图像为研究对象,从提升精度、降低计算量两个维度出发,提出一种基于改进的ShuffleNetV2卷积神经网络的病害识别模型:1)嵌入SK注意力机制;2)扩大DepthWise卷积核;3)裁剪无用卷积;4)改用PReLU激活函数。实验结果表明,改进后的模型在APPLE_Mix数据集上的准确率为98。75%,较原ShuffleNetV2准确率提升2。05%,Flops计算量降低18。9%,参数量增加6。9%,内存增加0。03 MB(均在可接受范围之内),能较好地平衡模型复杂度与识别精度。
Crop Disease Recognition Based on Improved ShuffleNetV2 Model
In view of the complex bottom feature extraction of traditional digital image processing technology,the recognition method of convolutional neural network has many parameters,large amount of calculation,complex network structure and low prac-ticability,this paper aims to build a crop disease recognition model that can be used in mobile applications,and takes three leaf im-ages of apple scab,apple rust and apple health as the research object.From the two dimensions of improving accuracy and reducing computation,a disease recognition model based on improved shuffleNetV2 convolutional neural network is proposed:1)Embed-ding sk attention mechanism.2)Convolution kernel with extended depth separable convolution.3)Clipping useless convolution.4)Using the prelu activation function instead.The experimental results show that the accuracy of the improved model in the data set of APLE_Mix is 98.75%,which is 2.05%higher than that of the original shuffleNetV2,the amount of flops calculation is reduced by 18.9%,the amount of parameters is increased by 6.9%,and the memory is increased by 0.03 MB(all are within acceptable range),which can better balance the model complexity and recognition accuracy.

ShuffleNetV2 modelcrop disease recognitionattention mechanismdepthwise separable convolution

姚艳、毋涛

展开 >

西安工程大学计算机科学学院 西安 710048

ShuffleNetV2模型 农作物病害识别 注意力机制 深度可分离卷积

国家自然科学基金(青年基金)项目

61806160

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(7)