首页|一种基于多维度语义增强的句子编码

一种基于多维度语义增强的句子编码

扫码查看
问答系统、情感分析、文本分类等自然语言处理任务通常依赖于句子级语义表示,这种表示一般由句子编码器获得。现有句子编码器过度依赖句子对交互信息,忽略了句子本身包含的语义表征信息。为此,论文提出了一种基于多维度语义增强的双向LSTM和最大池化层次模型(MDSE)。首先使用自注意力机制捕捉句子内部的重要特征,然后利用字符级嵌入信息和词性信息组成多个细粒度的特征信息通道,最后将所有通道的输出共同作为句向量表示。实验表明,与其他深度学习方法相比,MDSE模型在三个公开的自然语言推理数据集得到了显著的性能提升。同时,下游任务实验进一步验证了该方法的句子表征能力。
A Sentence Encoder Based on Multi-dimensional Semantic Enhancement
Natural language processing tasks such as question answering systems,sentiment analysis,and text classification typically rely on sentence level semantic representations,which are typically obtained by sentence encoders.The existing sentence encoders overly rely on sentence pair interaction information and ignore the semantic representation information contained in the sen-tence itself.Therefore,this article proposes a bidirectional LSTM and maximum pooling hierarchical model(MDSE)based on multi-dimensional semantic enhancement.Firstly,the self attention mechanism is used to capture important features within the sentence.Then,character level embedding information and part of speech information are utilized to form multiple fine-grained feature infor-mation channels.Finally,the outputs of all channels are collectively represented as sentence vectors.Experiments have shown that compared to other deep learning methods,the MDSE model has achieved significant performance improvements on three publicly available natural language inference datasets.Meanwhile,downstream task experiments further validate the sentence representation ability of this method.

attention mechanismsentence representationnatural language inferencelong and short-term memory network

白海平、白文

展开 >

华南师范大学计算机学院 广州 510631

注意力机制 句子表示 自然语言推理 长短期记忆网络

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(7)