首页|SGEU-Net:用于从高分遥感影像中提取道路的空间分组增强注意力网络

SGEU-Net:用于从高分遥感影像中提取道路的空间分组增强注意力网络

扫码查看
道路提取是现代路网规划的重要组成部分。近来,许多深度学习方法已被应用于该领域。然而,由于车辆以及树木和建筑物阴影的遮挡,在保持连续性的同时准确提取道路区域仍然是一个问题。论文提出了一种新型的道路提取网络-空间分组增强网络(SGEU-Net),由两个部分构成:一个改进的U-Net编码器-解码器网络和空间分组增强(SGE)注意力模块。SGE模块可以明显改善不同语义子特征在组内的空间分布,产生更可观的统计差异,增强语义区域的特征学习。改进的算法在马萨诸塞州道路数据集上进行实验,结果表明,与当前先进算法相比,所提算法提高了从遥感图像中提取道路的效果。
Spatial Group-wise Enhanced U-Net for Road Extraction from High-resolution Remote Sensing Images
Road extraction is an integral part of modern road network planning.Recently,many deep learning methods have been applied in this field.However,it is still a problem to extract the road area accurately while maintaining continuity due to the oc-clusion of vehicles and the shadows of trees and buildings.This paper presents a novel road extraction network,the Spatial Group-wise Enhanced U-Net(SGEU-Net),builts on two parts,which are an improved Encoder-Decoder U-Net and the Spatial Group-wise Enhanced(SGE)module.The SGE module can significantly improve the spatial distribution of different semantic sub-features within the groups and produce a more considerable statistical variance,enhancing feature learning in semantic regions.The improved algorithm is experimented on the Massachusetts road dataset,and the results show that the proposed algorithm im-proves the extraction of roads from remote sensing images compared with current state-of-the-art algorithms.

deep learningroad extractionhigh-resolution imageryspatial group-wise enhanced attention

刘作禹、贾渊

展开 >

西南科技大学计算机科学与技术学院 绵阳 621010

深度学习 道路提取 高分辨率图像 空间分组增强

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(7)