首页|基于深度学习的子句级文本摘要模型

基于深度学习的子句级文本摘要模型

扫码查看
针对文本自动摘要任务中整句级抽取式模型存在摘要过于冗余,以及训练目标与评价目标不匹配的问题,论文提出了一种基于深度学习的子句级文本摘要模型(CS-ASum)。首先,基于依存句法从原文中抽取子句级单元;然后,利用基于BERT预训练模型和基于Transformer模型的编码器获得子句的向量表示,得到初步候选摘要;最后,通过摘要匹配器计算候选摘要和原文的语义得分,得到最佳摘要。在CNN/Daily Mail数据集上的实验结果表明,CS-ASum在自动评测和人工评测中均优于对比模型,相较于表现最好的生成式摘要模型和抽取式摘要模型,CS-ASum的平均ROUGE指标值分别提高了0。76%和1。07%,由此可见,CS-ASum模型在自动文本摘要任务中比基础模型获得了更简洁、更忠于原文的摘要。
Clause-level Text Summarization Model Based on Deep Learning
The sentence-level extractive summarization model is relatively redundant and the training objectives do not match the evaluation goals in text automatic summarization task.In order to solve these problems,a clause-level text summarization model based on deep learning(CS-ASum)is proposed.Firstly,the clause-level units of the original text are extracted based on dependen-cy parsing method.Then,the vector representation of the clause are obtained by using the encoders based on BERT pre-trained model and Transformer model,and the preliminary summary candidates are received.Finally,the summary matcher is used to cal-culate the semantic similarity between the summary candidates and the original text,and the best summary is obtained.The experi-mental results on CNN/Daily Mail dataset show that,CS-ASum model is better than the compared models in both automatic evalua-tion and manual evaluation.Compared with the best-performing abstractive summarization model and extractive summarization mode,the average ROUGE value of CS-ASum model is increased by 0.76%and 1.07%respectively.Therefore,CS-ASum model acquires more concise and comprehensive summaries than the basic models in automatic text summarization task.

text summarizationdeep learningclause-leveldependency parsingROUGE evaluation

房一泉、沈斌、程华、杜嘻嘻

展开 >

华东理工大学信息化办公室 上海 200237

华东理工大学信息科学与工程学院 上海 200237

文本摘要 深度学习 子句级 依存句法 ROUGE评测

赛尔网络下一代互联网技术创新项目

NGII20170520

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(7)