首页|基于Transformer的微博文本情感分析方法

基于Transformer的微博文本情感分析方法

扫码查看
论文利用Transformer模型中的自注意力机制,模拟人脑神经系统对微博文本进行特征提取,利用TextCNN层将经过Transformer的词向量进行卷积,得到相邻词向量之间的时序信息,经过Tanh激活函数对模型进行优化,最后将卷积层得到的时序注意力权重应用于文本分类。实验结果证明,论文提出的模型在NLP&CC2013数据集上的准确率相对于Transformer模型有了0。38%的提高,并且在精确率、召回率和F1值上也有一定程度的提升。
Sentiment Analysis Method of Microblog Text Based on Transformer
In this paper,the self-attention mechanism in the Transformer model is used to simulate the human brain nervous system to extract the features of the microblog text,and the TextCNN layer is used to convolve the word vectors passed through the Transformer to obtain the timing information between adjacent word vectors.The activation function optimizes the model by Tanh,and finally the temporal attention weights obtained by the convolutional layers are applied to text classification.The experimental re-sults show that the accuracy of the model proposed in this paper on the NLP&CC2013 dataset is improved by 0.38%compared with the Transformer model,and the precision,recall and F1 value are improved to a certain extent.

microblogtext sentiment analysisTransformerTextCNN

曹珍、张舒羽

展开 >

武汉邮电科学研究院有限公司 武汉 430000

微博 文本情感分析 Transformer TextCNN

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(7)